永续年金是无限期支付的年金,无终值。在现实经济生活中,永续年金是不存在的,但期限长、利率高的年金,可以视同永续年金,用永续年金现值计算方法计算其近似现值。我们将年金间隔期与计息期一致的永续年金称为一般永续年金或标准永续年金,年金间隔期与计息期不一致的永续年金称为特殊永续年金或非标准永续年金。一般永续年金现值计划公式称为计算永续年金现值的基本公式(以下简称为基本公式)。由于计息期一般为一年,所以我们以计息期一年为例。
设某间隔期为一年的永续年金为R,年折现率为i,现值为V0。根据普通年金现值计算公式有:
V_0=R cdot (P/A,i,n)=R cdot frac{1-frac{1}{(1+i)^n }}{i}
当n rightarrow infty时,frac{1}{(1+i)^n }为0。
于是得到基本公式为:V_0=frac{R}{i}